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Abstract

Mortality kinetics of various animal species and
failure kinetics of industrial components and
materials are in variance with Gompertz’s law or
law of exponentially increasing force of mortality.
A palir of straight lines is in general obtained on a
semilogarithmic plot, one for the first part of the
cumulative mortality curve, up to its Inflection
point, the other, for the second part of the survivor-
ship curve, after its inflection point. It Is conclud-
ed that after a certain species-characteristic age,
force of mortality and probability of death cease
to increase exponentially with age, with the excep-
tion of certain human populations, and remain
constant at a high level on the average for the re-
mainder of the life span.

Introduction

Benjamin Gompertz demonstrated in 1825 that the
force of mortality in human populations of his era
increased exponentially with age (1). In more re-
cent years it has been tacitly assumed that this
was true of metazoan animals in general. A survey
of recent gerontological literature indicated that
practically all mortality data for a great variety of
metazoan species have been published in the
usual form of free-drawn survivorship curves.
There have been only sporadic cases of a
Gompertz function fitted on the mortality data
from species other than humans. The purpose of
this paper is to present a paradigm which
describes mortality kinetics more accurately than
the Gompertzian model. A mathematical model of
mortality kinetics which is consistent with the
paradigm has been published recently (2) as well
as an earlier brief report (Economos, A.C. and
Miquel, J.: Non-Gompertzian mortality kinetics.
AGE 1: 76, 1978).

Gompertz’s Law

The Gompertz hypothesis states that the ratio of
the number of individuals dying over a small age
interval, over the number of survivors at the begin-
ning of that interval, increases exponentially with
age; this ratio is called “force of mortality” or
‘“age-specific death rate.” In Figure 1 mortality
data for Drosophila melanogaster (3) are plotted in
the customary way so that a “‘survivorship curve”,
dashed line, is obtained. The solid line illustrates
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how the survivorship data can be fitted with a
Gompertz function. The Gompertzian function
does not represent the survivorship curve over the
last quarter of the life span for fruit flies; for other
metazoan species, this part can be as large as the
terminal 70 per cent. The survivorship curve in-
flects strongly and becomes clearly “slower” in
the latter part of the population life span in-
dicating that the force of mortality is no longer in-
creasing exponentially.
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Fig. 1. A typical survivorship curve and its fit using the
Gompertz function. Note the large deviation of the
model from the actual! curve, e.g., hatched areas,
starting at about 95 days of age, i.e., at the inflection
point of the curve. Data represent survivorship with age
of Drosophila melanogaster.

A Non-Gompertzian Paradigm for Mortality
Kinetics

A semilog plot of the number of survivors in Figure
1 as a function of age gives a curve consisting of a
convex part over about 75 percent of the life span
and ending in an apparently straight line segment,
the survivors line, over the last 25 percent of the
life span. On plotting the corresponding
cumulative mortality curve on the same plot a
complementary picture is obtained: a long
straight line segment, the non-survivors line,
followed by a shorter convex part. The age which
marks the termination of the non-survivors line
and the beginning of the survivors line cor-
responds to the inflection point that is generally
present in the plot of survivors against age of
most metazoan species under optimal en-
vironmental conditions. Some examples are
shown: for four invertebrates, nematodes (4), Cam-
panularia flexuosa (5), rotifer (6), and shrimp (7), in
Figure 2; and for three male rodents, guinea pigs
(8), rats (9), and mice (10), in Figure 3; in addition,
the paradigm has been shown to hold for the three
insect species to which it has been applied. The
same paradigm is also useful in describing the




failure kinetics of industrial products; fatigue life
of steel (11), 26 industrial relays (12) with a max-
imum life span of 95 million operations and motor
heat insulators (12) with a maximum life span of
1000 hours when tested at 200° C.
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Fig. 2. Non-Gompertzian mortality kinetics of four in-
vertebrate species: nematodes, Campanularia flexuosa,
rotifers and shrimp, plotted according to the introduced
paradigm.
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Mortality kinetics of heavily predated natural
populations generally lack a non-survivors line
whereas humans and animal populations in
suboptimal environments lack a survivors line. In
the latter case Gompertz's law is valid over the
entire life span; in the former force of mortality is
constant throughout the life span.

Discussion

Gompertz was an actuary and his interest in mor-
tality kinetics was confined to the inhabitants of
England at the beginning of the nineteenth
century. Data on other metazoan species were not
available at that time. The data available today
show that Gompertz’s law is an approximation.
For most species, the force of mortality and pro-
bability of death cease to increase exponentially
with age, after a certain species-characteristic
age, and remain on the average at a constant high

level for the remainder of the life span.

The non-Gompertzian paradigm presented in
this report describes mortality kinetics accurately,
is simple to employ and should facilitate study of
the effects of environmental factors, nutrients,
drugs, etc., on the life span.
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Fig. 3. Non-Gompertzian mortality kinetics of three
rodent species, guinea pigs, rats and mice.
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Fig. 4. Non-Gompertzian failure kinetics of three
Industrial materials: steel, Industrial relays and motor
heat Insulators.
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